技術文章
Technical articles伺服放大器靈敏度過低。伺服放大器的靈敏度應整定,靈敏度過高(≤130μA)將導致電動執行器振蕩,輕則擊穿單相伺服電機分相電容,重則燒毀伺服電機,使控制系統*癱瘓。靈敏度過低(≥450μA),將造成執行機構動作不及時,嚴重影響控制精度和調節品質。因此,應根據控制對象的響應時間和控制系統的調節特性,將伺服放大器的靈敏度調整合適(一般在180~340μA之間)。
電動執行器閥位反饋信號誤差大。振動是造成電動執行器閥位反饋信號誤差大的主要原因。對于差動變壓器式反饋系統,振動使變壓器鐵芯運行不穩,產生位移,加大反饋信號誤差;電位器式反饋系統則造成主電位器接觸不良,出現反饋信號跳動紊亂,使真實閥位與執行器反饋閥位之間產生巨大偏差。
電動執行器選型不合適。當電動執行器用來控制臟污介質或勃度比較大的流體時,應綜合考慮電動執行器的負載能力,盡可能選輸出力矩大一些的電動執行器,同時定期清理調節閥閥體,保證調節閥軸(蝶閥類)轉動靈活,以保證電動執行器的控制精度。如我廠用來控制氨水、焦油的六套電動執行器,調節閥時常有被焦油糊死的現象,為此,制定了嚴格的清掃制度,堅持每月用蒸汽清掃一次,并做好日常點檢,確保電動執行器的靈活可靠和控制精度。
影響電動執行器控制精度的因素有以下幾個方面:
1.調節閥振動;
2.電動執行器制動器失靈;
3.電動執行器輸出存在滯后環節;
4.伺服放大器靈敏度過低;
5.電動執行器閥位反饋信號誤差大;
6.電動執行器選型不合適等。
解決辦法
1.調節閥振動。首先找到振源,由外部引起的振動,應使調節閥遠離振源;消除或減弱振源的振動強度;采用增加支點等方法減弱調節閥的振動。由內部介質流動造成的振動,應盡量減少調節閥的阻力。在調節能力允許的情況下,可增加一個旁通管道。對于快速響應控制系統,可選用對數特性閥芯。蝶閥則盡量工作在10~70°范圍之內,避開介質對閥體的作用力交變點。
2.電動執行器制動器失靈。制動器用來消除電動執行器斷電后轉子和輸出軸的慣性惰走和負載反作用力矩的影響,使輸出軸準確地停在相應的位置上。如果制動器失靈,將降低電動執行器的控制精度。因此應做好以下幾點。
(1)根據負載大小調整制動力矩;
(2)制動輪與制動盤的間隙要調整合適;
(3)制動閘瓦要保證有足夠的摩擦系數,嚴禁滴上油類物質(加注潤滑油時不要超過油標上限位置)。
注意事項
以MD系列電動執行機構的整體式比例調節型為例。
在通電前,必須進行外觀檢查和絕緣檢查,動力回路(弧電回路)及信號觸點對外殼的絕緣,用500V兆歐表測zui不得低于20MΩ:信號輸人、輸出回路及它們與動力回路之間的絕緣,除特殊要求外,不應低于l0mΩ合格后方可通電。在通電后,應檢查變壓器、電機及電子電路部分元件等是否過熱,轉動部件是否有雜音,發現異?,F象應立即切斷電源,查明原因。未查明原因前,不要輕易焊下元件。更換電子元件時,應防止溫度過高,損壞元件。更換場效應管和集成電路時一定要把電烙鐵妥獸接地,或脫離電源利用余熱進行焊接。拆卸零部件、元器件或焊接導線時,應做好標記,對應記號。應盡公避免被檢設備的輸出回路開路,避免被檢設備在有輸人信號時停電。檢修后的設備必須進行校驗。對干電動機要檢查線圈對外殼及線圈之間的絕緣電阻,測皿線圈直流電組,清洗軸承并加潤滑油,檢查轉子、定子線圈及制動裝;對于減速器要解體清洗各部件,檢查行星齒輪部分的情況,檢查斜齒輪部分的情況,檢查渦輪渦桿或絲桿螺母的嚙合情況,zui后進行裝配、調整并加長效鏗基潤滑脂。對于位置傳感器部分要進行外觀檢查,檢查電位器與行程控制機構的同軸連接情況,檢查電位器的基本情況,檢查電位器及放大板之間的連接情況。
以在各種突發情況下的生產安全性為例。
在大型管網系統中,閥門分布較廣或較遠,為保證在各種突發情況下的生產安全性,閥門需要具有現地斷電后手動關閉門,并同樣能夠在現地顯示及遠程監控閥門開度的功能,這就需要電動執行機構具有自備電池低功耗手動模式,在現地斷電情況下進入手動模式,利用自備電池可以不僅僅是現地顯示閥門開度,同時能夠提供遠端閥門開度顯示起到遠程監控的作用。
低功耗手動模式,涉及到低功耗液晶屏技術、低功耗CPU技術、低功耗數據采集、計算、處理及發送并低功耗電池供電技術,其中關鍵的是閥門開度傳感器需要選用全行程的值多圈編碼器。 實際上在手動模式情況下,因變化響應要求不高,MCU(微處理器)可以采取低功耗間隙式工作模式,也就是半休眠模式,這樣可以確保所耗功耗極低,自備電池容量能夠較長時間的使用。
當選用低功耗半休眠模式的功能,閥門開度傳感器就要選用停電狀況下不影響位置記憶的傳感器,例如電位器或全行程多圈值編碼器。電位器的精度與測量行程有限,目前在電動執行器上的使用有兩種方法,一種是全行程用一次電位器行程(通過變速),斷電位置不會丟失,但是那樣精度很低;另一種是用多次電位器行程,位置精度是提高了,但是每次超出行程就要靠電子記憶實現,當斷電后沒有了電子記憶位置,如果用電池實現記憶,需耗費較多電池能量。如果用霍爾脈沖計數的方法,計數是實時不間斷的,斷電后用電池耗電記憶,電池容 量是不夠的。選用全行程多圈值編碼器,是這種模式zui可能實現的閥門開度傳感器,當然,由于數據讀取時間極短而要保證數據的準確性,要求此編碼器的數據可靠性要求就很高了。有一些選用的值編碼器是單圈功能的,超出單圈需要用電子計圈記憶,其斷電后的因需要計圈記憶的耗電較大,不適合這種半休眠低功耗模式。
全行程多圈值編碼器采用RS485主動模式發送數據,每隔8mS主動發送一次,編碼器的通電啟動時間極短,數據含兩種校驗方式,可靠性高,由于是全行程多圈值編碼器,在總行程中的每一個位置是*編碼的,與前次讀數無關而無需計數、計圈及記憶,所以可以采用間隙式通電、讀數的模式,比如每隔1—5秒時間,MCU主板間隙式工作一次(或兩次),每次工作時間僅幾十毫秒,快速實現啟動、數據讀取、處理、發送的工作,其余時間處于休眠狀態,這就是“半休眠低功耗模式”。
故障分析
以MD系列電動執行機構的整體式比例調節型為例。
位置傳感器部分
(1)電動執行機構接受控制系統發出的開、關信號后,電機能正常轉動,但沒有閥位反饋。其可能原因是:
1)位置傳感器的電位器與行程控制機構不能同軸旋轉,需檢查連接部分是否損壞;
2)電位器損壞或性能變壞,阻值不隨轉動而發生變化;
3)位置傳感器的電位器及放大板間連接導線是否正常;
4)PM放大板是否損壞,有無反饋信號送出。
(2)電動執行機構接受控制系統發出的開、關信號后,電機能正常轉動,但閥位反饋始終為一固定值,不隨閥門的開、關而變化,其可能原因是:
1)導電塑料電位器的阻值為一恒值,不隨轉動而變,檢修更換電位器;
2)放大板中有關部分異常,檢查處理。
執行器
(1)執行機構接收控制系統發出的開關信號后,電機不轉并有嗡嗡聲。其原因可能是:
1)減速器的行星齒輪部分卡澀、損壞或變形;
2)減速器的斜齒輪傳動部分變形或過度磨損或損壞;
3)減速器的渦輪渦桿或絲桿螺母傳動部分變形損壞、卡澀等;4)整體機械部分配合不好,不靈活,需調整加油。
電氣部分故障
1)電動執行機構接受控制系統發出的開、關信號后,電機不轉,也無嗡嗡聲??赡茉蚴牵簺]有交流電源或
電源不能加到執行機構的電機部分或位置定位器部分;PM放大板工作不正常,不能發出對應的控制信號;固態繼電器部分損壞,不能將放大板送來的弱信號轉變成電機需要的強電信號;電機熱保護開關損壞;力矩限制開關損壞;行程限制開關損壞;手動/自動開關位置選錯或開關損壞;電機損壞。
2)電動執行機構接受控制系統發出的開、關信號后,電機不轉,有嗡嗡聲。其可能原因是:電機的啟動電容損壞;電機線圈匝間輕微短路;電源電壓不夠。
3)電動執行機構接受控制系統發出的開、關信號后,電機抖動,并伴有咯咯聲,其原因可能是:PM放大板的輸出信號不足不能使固態繼電器*導通,造成電機的加載電壓不足;固態繼電器性能變壞,造成其輸出端未*導通。
與傳統設備區別
從傳統觀念來看,氣缸與電動執行器一直被認為是屬于兩個*不同領域的自動化產品,隨著電氣化程度的不斷提高,電動執行器卻慢慢浸入氣動領域,二者在應用中既有競爭又相互補充。在本期欄目中,我們將從技術性能、購買和應用成本、能源效率、應用場合及市場形勢等幾個方面來對比氣缸與電動執行器各自的優勢
技術性能的比較
*,相比電動執行器,氣缸可在惡劣條件下可靠地工作,且操作簡單,基本可實現免維護。氣缸擅長作往復直線運動,尤其適于工業自動化中zui多的傳送要求——工件的直線搬運。而且,僅僅調節安裝在氣缸兩側的單向節流閥就可簡單地實現穩定的速度控制,也成為氣缸驅動系統zui大的特征和優勢。所以對于沒有多點定位要求的用戶,絕大多數從使用便利性角度更傾向于使用氣缸工業現場使用電動執行器的應用大部分都是要求高精度多點定位,這是由于用氣缸難以實現,退而求其次的結果。
而電動執行器主要用于旋轉與擺動工況。其優勢在于響應時間快,通過反饋系統對速度、位置及力矩進行控制。但當需要完成直線運動時,需要通過齒形帶或絲桿等機械裝置進行傳動轉化,因此結構相對較為復雜,而且對工作環境及操作維護人員的專業知識都有較高要求。
氣缸的優勢
(1)對使用者的要求較低。氣缸的原理及結構簡單,易于安裝維護,對于使用者的要求不高。電缸則不同,工程人員必需具備一定的電氣知識,否則極有可能因為誤操作而使之損壞。
(2)輸出力大。氣缸的輸出力與缸徑的平方成正比;而電缸的輸出力與三個因素有關,缸徑、電機的功率和絲桿的螺距,缸徑及功率越大、螺距越小則輸出力越大。一個缸徑為50mm的氣缸,理論上的輸出力可達2000N,對于同樣缸徑的電缸,雖然不同公司的產品各有差異,但是基本上都不超過1000N。顯而易見,在輸出力方面氣缸更具優勢。
(3)適應性強。氣缸能夠在高溫和低溫環境中正常工作且具有防塵、防水能力,可適應各種惡劣的環境。而電缸由于具有大量電氣部件的緣故,對環境的要求較高,適應性較差。
電缸的優勢主要體現在以下3個方面:
(1)系統構成非常簡單。由于電機通常與缸體集成在一起,再加上控制器與電纜,電缸的整個系統就是由這三部分組成的,簡單而緊湊。
(2)停止的位置數多且控制精度高。一般電缸有低端與之分,低端產品的停止位置有3、5、16、64個等,根據公司不同而有所變化;產品則更是可以達到幾百甚至上千個位置。在精度方面,電缸也具有的優勢,定位精度可達¡0.05mm,所以常常應用于電子、半導體等精密的行業。
(3)柔韌性強。毫無疑問,電缸的柔韌性遠遠強于氣缸。由于控制器可以與PLC直接進行連接,對電機的轉速、定位和正反轉都能夠實現控制,在一定程度上,電缸可以根據需要隨意進行運動;由于氣體的可壓縮性和運動時產生的慣性,即使換向閥與磁性開關之間配合地再好也不能做到氣缸的準確定位,柔韌性也就無從談起了。
版權所有© 2024 上海茂碩機械設備有限公司 All Rights Reserved 備案號:滬ICP備18010475號-6
技術支持:化工儀器網 管理登錄 sitemap.xml